\qquad

Data and Probability

Worksheet 1 Average

Find the mean or average of each set of data.

Example

The weights of four objects are shown below.

$$
\text { Mean or average }=\frac{\text { Total number or amount }}{\text { Number of items }}
$$

Step 1 Find the total weight of all the objects.

$$
4+\underline{14}+\underline{24}+\underline{34}=\underline{76 \mathrm{lb}}
$$

Step 2 Divide the total weight by the number of objects.

$$
76 \div \underline{4}=\underline{19 \mathrm{lb}}
$$

The average weight of the four objects is \qquad pounds.

1. The volumes of five containers are listed below.
$48 \mathrm{~mL}, 26 \mathrm{~mL}, 32 \mathrm{~mL}, 57 \mathrm{~mL}, 97 \mathrm{~mL}$
Step 1 Find the total volume of all the containers.

$$
\sim_{2}+\ldots+\ldots+\ldots+\ldots \quad \text { mL }
$$

Step 2 Divide the total volume by the number of containers.

$$
\ldots \div 5=\ldots \mathrm{mL}
$$

The average volume of the containers is \qquad milliliters.
2. The distances traveled by some trucks are listed below.

536 km, 450 km, 152 km, 824 km, 375 km, 459 km
Total distance $=$ \qquad $+$ \qquad $+$ \qquad $+$ \qquad $+$
\qquad

$$
=
$$

\qquad km

Average distance $=$ \qquad $\div 6=$ \qquad km

The average distance traveled is \qquad kilometers.

Find the total from the mean or average.

Example

The mean length of a side of a square plot of land is 11 meters. What is the plot's perimeter?

> Total number or amount
> $=$ Mean or average \times Number of items

A square plot of land has 4 equal sides.
$11 \times 4=44$ meters
The plot's perimeter is \qquad 44 meters.
3. A bottle of milk is poured into 8 smaller cartons. The mean volume of milk in each carton is 375 milliliters. What is the total volume of milk in the cartons?
4. Mrs. Ellis spent an average of $\$ 28$ on a book. She bought 185 books for the school library. What is the total amount of money Mrs. Ellis spent?
5. Mary walks to school every day. She walks an average distance of 750 meters each day. What is the total distance Mary walked in 5 days?

Total distance Mary walked in 5 days
$=$ \qquad $\times \ldots=$ \qquad
She walked \qquad meters in 5 days.
6. The arm lengths of 7 students are measured during a math class. The average length of their arms is 68 centimeters. Find the total length of their arms.
7. The table shows the scores Joe received for four tests.

Test	First	Second	Third	Fourth
Score	67	74	$?$	92

Joe's mean score for the four tests is 79 .
a. Find the total score for the four tests.
b. What is Joe's score for the third test?

Name: \qquad Date: \qquad

Complete. Use the data in the table.

The table shows the number of basketball games that Rudd played in during two years.

Opponent	Number of Games
Dallas	10
Lancaster	9
Chicago	13
Seattle	11
Washington	15

Example
Rudd played \qquad games against Seattle.
8. Rudd played the most games against \qquad
9. Rudd played a total of \qquad games in two years.
10. The average number of games Rudd played a year is \qquad

Solve.

Calvin bought 1 kilogram of each type of nut.

Example

How many kilograms of nuts did Calvin buy altogether?
Calvin bought 3 kilograms of nuts altogether.
11. How much did he pay altogether?
12. Find the average price of a kilogram of nuts.
\qquad
\qquad

Worksheet 2 Median, Mode, and Range

Find the median of each set of data.
Example
$4,7,9,12,16,25,33$
The median is \qquad
When a set of data arranged from least to greatest has one middle number, the middle number is the median.

1.
199
400
601 802 1,003 1,204
a. What is the middle number? \qquad
b. What is the median? \qquad
2.

The median mass is \qquad kilograms.
3.

Game	A	B	C	D	E
Score	34	46	60	74	88

The median score for the games is \qquad
\qquad

Find the median of each set of data.

4.
107 m

a. What are the middle numbers?

The middle numbers are \qquad and \qquad
b. What is the median?

$$
\begin{aligned}
& =\frac{\square}{2} \\
& =\square \mathrm{m}
\end{aligned}
$$

The median is \qquad meters.
\qquad Date: \qquad

Order each set of data from least to greatest. Then find the median.

Example

These are the sales prices of some electrical appliances in a store.
\$42
\$15
\$23
\$33
\$10

Ordered from least to greatest:

least

greatest
The median price is \qquad \$23
5. These are the heights that six students jumped during a high jump event.

Ordered from least to greatest:
\square
\square

\square least

The median height is \qquad centimeters.
\qquad

Find the mode. Use the data in the line plot.

Harry picks some number cards from a bag. He records the numbers on the line plot. Each X represents 1 card.

6. Harry picks out 5 more number cards from the bag. He includes these numbers on the line plot.

a. The card with the greatest number of X_{s} is \qquad
b. The mode of this data set is \qquad
c. Harry picked a total of \qquad cards from the bag.
\qquad
\qquad

Find the modes. Use the data in the line plot.

Example

Tashi picks 22 number cards from a bag.
She records the numbers on the line plot.

7. The set of data shows the number of leaves on different branches of a tree. $3,3,3,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8,8,9,9$

a. Complete the line plot. Each X represents 1 branch.
b. branches have 7 leaves each.
c. The modes of this data set are \qquad and \qquad

Find the range of each set of data.

Example

Here are the distances traveled by Mr. Tyler over a two-week period.

87 miles, 129 miles, 56 miles, 423 miles, 298 miles

$$
\text { Range }=\text { Greatest number }- \text { Least number }
$$

$423-56=367$ miles
So, the range of this set of numbers is \qquad miles.
8. These are the masses a weightlifter lifted during training.

a. The smallest mass is \qquad
b. The largest mass is \qquad
c. The range of the mass lifted

$$
\begin{aligned}
& =\text { largest mass }- \text { smallest mass } \\
& =- \\
& =
\end{aligned}
$$

\qquad

Date:

\qquad

Find the mean of each set of data using a line plot.

Example

Uncle Joe cuts some fruits and counts the number of seeds in each fruit. The line plot shows the number of seeds in each fruit. Each \boldsymbol{X} represents 1 fruit.

2 fruits have 1 seed $\rightarrow 2 \times 1=2$
3 fruits have 2 seeds $\rightarrow 3 \times 2=6$
3 fruits have 3 seeds $\rightarrow 3 \times 3=9$
7 fruits have 4 seeds $\rightarrow 7 \times 4=28$
5 fruits have 5 seeds $\rightarrow 5 \times 5=25$
5 fruits have 6 seeds $\rightarrow 5 \times 6=30$

$$
\begin{aligned}
\text { Mean } & =\frac{\text { Total number of seeds }}{\text { Total number of fruits }} \\
& =\frac{2+6+9+28+25+30}{2+3+3+7+5+5} \\
& =\frac{100}{25}=4
\end{aligned}
$$

The mean number of seeds is \qquad 4
9. The line plot shows the lengths of ribbon Mrs. Kent cut.

Lengths in cm

2 ribbons have a length of 12 centimeters $\rightarrow 2 \times 12=\square \mathrm{cm}$ 4 ribbons have a length of 20 centimeters $\rightarrow 4 \times 20=\square \mathrm{cm}$ 2 ribbons have a length of 28 centimeters $\rightarrow 2 \times 28=\square \mathrm{cm}$ Total length of all the ribbons $=\square+\square+\square$

$$
=\square \mathrm{cm}
$$

Mean $=\frac{\text { Total length of ribbons }}{\text { Total number of ribbons }}=\frac{\square}{\square}$

$$
=\square \mathrm{cm}
$$

The mean length of the ribbons is \qquad centimeters.
\qquad
\qquad
10. Students were asked to count the number of marbles in their marble bags. The table shows the data collected.

Number of Bags	6	10	4	8	7
Number of Marbles in Each Bag	5	6	7	8	9

Make a line plot to show the data. Each X represents 1 bag.

$=\square$

$=\square$

$$
=\square
$$

$$
=\square
$$

$$
\begin{aligned}
\text { Total number of marbles } & =\square+\square+\square+\square \\
& =\square
\end{aligned}
$$

Mean $=\frac{\text { Total number of marbles }}{\text { Total number of bags }}=\frac{\square}{\square}$

$$
=\square
$$

The mean number of marbles is \qquad

Name:

\qquad Date: \qquad

Solve. Show your work.

Uncle Sam visits some houses to find out the number of people living in each house. The line plot shows the number of houses and the number of people living in each house. Each \boldsymbol{X} represents 1 house.

11. What is the range of the number of people living in the houses?
12. How many houses in the survey have only 2 people living in them?
13. How many houses in the survey have the greatest number of people living in them?
14. Find the mean of the number of people living in each house.
15. Find the modes of this set of data.
\qquad

Worksheet 3 Stem-and-Leaf Plots

Complete.

These are the scores students received in a math quiz.
$67,42,73,75,88,94,69,97,81,98$

Example

Make a stem-and-leaf plot with the given set of data.
Step 1 Order the scores from least to greatest.

$$
42,67,69,73,75,81,88,94,97,98
$$

Step 2 Put the tens digits in the stem column.
Step 3 Put the ones digits in the leaves column.

Place the tens digits in the stem column.

\left.| Math Quiz Scores | | |
| ---: | :--- | :---: |
| Stem | Leaves | |
| 4 | 2 | |
| 6 | 79 | |
| 7 | 35 | |
| 8 | 18 | |
| 9 | 478 | |$\right\}$

Order the numbers in the ones place from least to greatest.
$6 \mid 7$ stands for $\quad 67$.

1. The outlier of a data set is the number farthest away from the rest of the data. The outlier of this set of data is \qquad
2. The stem 9 has \qquad leaves.

Complete.

These are the number of rolls that Sally's bakery sold on different days during the month of October.

$$
\begin{array}{llllllllllll}
52 & 27 & 48 & 24 & 34 & 41 & 58 & 45 & 47 & 63
\end{array}
$$

3. Order the number of rolls from least to greatest.
4. Complete the stem-and-leaf plot.

Number of Rolls	
Stem	Leaves
2	
3	
4	
5	
6	

5. a. The stem 3 has \qquad leaves.
b. 2| 4 stands for \qquad
c. The greatest number of rolls sold is \qquad
d. Altogether, there are \qquad leaves in this set of data.
\qquad
\qquad

Find the median, mode, and range. Use the stem-and-leaf plot.

The stem-and-leaf plot shows the weight of the apples sold at a market.

Weight of Apples (lb)		
Stem	Leaves	
3	27	
4	5	6
5	3	3
6	0	2
7	1	2
9	6	

$3 \mid 2$ stands for \qquad 32

Example

The median weight is \qquad
Median $=\frac{58+60}{2}=\frac{118}{2}=59 \mathrm{lb}$
The median weight is \qquad 59 pounds.

Since there are 20 leaves, the set of data has two middle numbers. The two middle numbers are 58 and 60.
6. a. The modes are the numbers that occur most often. So, the modes are
\qquad
\qquad and \qquad
b. \quad Range $=$ Greatest number - Least number

$$
\begin{aligned}
& =\ldots \mathrm{lb}-32 \mathrm{lb} \\
& =\ldots
\end{aligned}
$$

c. The outlier in this set of data is \qquad pounds.

Complete the sentences. Use the data in the stem-and-leaf plot.

The stem-and-leaf plot shows the length of some snakes measured in centimeters.

Length of Snckes (cm)	
Stem	Leaves
2	167
3	4558
4	2224677
5	0146
6	15

2| 1 stands for \qquad .

Example

The length that appears most often is \qquad centimeters.
7. a. The mode of the set of data is \qquad centimeters.
b. $3 \mid 4$ stands for \qquad centimeters.
c. The length of the longest snake is \qquad centimeters.
d. The length of the shortest snake is \qquad centimeters.
e. The range of the lengths is \qquad centimeters.
f. The median length of the snakes is \qquad centimeters.

Name: \qquad

Date: \qquad

Complete. Show your work.

The table shows the amount of money each stall collected during the fair.

Stall	Amount of Money
A	$\$ 42$
B	$\$ 59$
C	$\$ 46$
D	$\$ 60$
E	$\$ 64$
F	$\$ 75$
G	$\$ 79$
H	$\$ 68$
I	$\$ 65$

Example
Which stall collected the most amount of money? Stall G
8. a. Make a stem-and-leaf plot to show the set of data.

Amount of Money	
Stem	Leaves

4|2 stands for 42.
b. Is there a mode for this set of data? Explain your answer.
c. What is the range of the amount of money collected?

Range $=$ Greatest amount - Least amount
\qquad
\qquad
The range of the amount of money collected is \qquad
d. Find the median amount of money collected.

The median amount of money collected is \qquad
e. What is the total amount of money collected at the fair?

A total of \qquad was collected.
f. Find the average amount of money collected by each stall.

Average amount of money collected
$=\frac{\text { Total amount of money collected }}{\text { Number of stalls }}$

The average amount of money collected by each stall is \qquad .
\qquad

Worksheet 4 Outcomes

Describe the likelihood of each outcome. Write more likely, less likely, equally likely, certain, or impossible.

There are 2 red marbles and 4 blue marbles in a bag. One marble is drawn from the bag at a time.

1. A blue marble will be drawn.
2. After two blue marbles are removed from the bag, a red marble will be drawn.
3. Four yellow marbles are now added to the bag in Exercise 2.
a. A yellow marble will be drawn.
b. A blue marble will be drawn.
4. All the red and blue marbles are removed from the bag in Exercise 3.
a. A yellow marble will be drawn.
b. A green marble will be drawn.
\qquad
\qquad

Find the possible outcomes. Then describe each likelihood using

 more likely, less likely, equally likely, certain, or impossible.Look at the spinners. Each spinner is spun once.
Example

Possible Outcome	Yellow
Likelihood of Landing on Yellow	Certain

5.

Possible Outcome
Likelihood of
Landing on Yellow
6.

Possible Outcome
Likelihood of Landing on Yellow
7.

Possible Outcome
Likelihood of
Landing on Yellow
\qquad
\qquad

Check (\mathcal{V}) the correct statement that describes each possible outcome.

All the cubes are put into a bag and a cube is drawn from the bag.

Example

a. You are more likely to draw a yellow cube than a blue cube. \square
b. You are more likely to draw a blue cube than a yellow cube.

8.

a. You are less likely to draw a yellow cube than a blue cube. \square
b. You are less likely to draw a blue cube than a yellow cube. \square

9.
a. It is impossible to draw a yellow cube. \square
b. It is impossible to draw a green cube. \square
10.

a. It is certain that you will draw a yellow cube. \square
b. It is certain that you will draw a blue cube. \square
\qquad

Read each description of the outcome. Then label the color of the parts of the spinner.

Each spinner is divided into 8 equal parts. Use B to represent blue and Y to represent yellow.

Example

It is more likely that the spinner will land on blue than on yellow.

11. It is impossible for the spinner to land on blue.

12. It is as equally likely that the spinner will land on blue as on yellow.

13. It is certain that the spinner will land on blue.

\qquad
\qquad

Worksheet 5 Probability as a Fraction

Find the probability as a fraction in simplest form.

Shawn made a spinner with 6 equal parts. He labeled each part with the numbers 1 through 6. Shawn spins the spinner once.

Example

Find the probability of landing on 2 or 3 .

Step 1 Find the number of favorable outcomes.

A favorable outcome is the result you want.

There are only 2 favorable outcomes.

Step 2 Find the total number of possible outcomes.
There are 6 possible outcomes.

Step 3 Find the probability as a fraction.
Probability of a favorable outcome

$=\frac{\text { Number of favorable outcomes }}{\text { Total number of possible outcomes }}=\frac{2}{6}=\frac{1}{3}$
The probability of landing on 2 or 3 is $\frac{1}{3}$

1. The probability of landing on an odd number.

The odd numbers are \qquad and \qquad
Number of favorable outcomes $=$ \qquad
Number of possible outcomes $=6$
Probability of landing on an odd number
$=\frac{\text { Number of favorable outcomes }}{\text { Total number of possible outcomes }}=\frac{\square}{6}=\frac{\square}{\square}$

The probability of landing on an odd number is \qquad
2. The probability of landing on a number less than 5 .

The numbers less than 5 are \qquad \longrightarrow, and \qquad
Number of favorable outcomes $=$ \qquad
Number of possible outcomes $=$ \qquad
Probability of landing on a number less than 5
$=\frac{\text { Number of favorable outcomes }}{\text { Total number of possible outcomes }}=\frac{\square}{6}=\frac{\square}{\square}$

The probability of landing on a number less than 5 is \qquad
3. The probability of landing on a number greater than 3 .

The numbers greater than 3 are \qquad and \qquad
Number of favorable outcomes $=$ \qquad
Number of possible outcomes $=$ \qquad
Probability of landing on a number greater than 3
$=\frac{\text { Number of favorable outcomes }}{\text { Total number of possible outcomes }}=\frac{\square}{\square}=\frac{\square}{\square}$

The probability of landing on a number greater than 3 is \qquad
\qquad
\qquad

Find each probability on the number line as a fraction in simplest form. Then describe the probability of each outcome as certain, impossible, more likely, less likely, or equally likely.

There are 5 red cubes, 3 green cubes, and 2 yellow cubes in a bag. One cube is drawn from the bag.

Example

The probability of drawing a green cube is $\frac{3}{10}$

The number line shows that the likelihood of this outcome is less likely as $\frac{3}{10}$ is nearer to $\frac{0}{10}$ than to $\frac{10}{10}$.

The closer the probability of an outcome is to 1 , the more likely the outcome is to occur.
4. The probability of drawing a red cube.

Likelihood of outcome: \qquad
\qquad
5. The probability of drawing a yellow cube.

Likelihood of outcome: \qquad
6. The probability of drawing a red cube or a yellow cube.

Likelihood of outcome: \qquad
7. The probability of drawing a blue cube.

Likelihood of outcome: \qquad

Find the probability of each outcome. Then describe the outcome as certain, impossible, more likely, less likely, or equally likely.

Joyce has a set of 10 animal cards. There are 5 dog cards, 2 cat cards, 2 rabbit cards, and 1 bird card in the set. She shuffles the cards, places them face down in a stack, and draws the first card from the top of the stack.

Example

Probability of a dog card $=\frac{5}{10}=\frac{1}{2}$
It is equally likely to draw a dog card.
8. Probability of a rabbit card $=$

Likelihood of outcome: \qquad
9. Probability of a dog or a cat card $=$
 Likelihood of outcome: \qquad
10. Probability of a cat, rabbit, or a bird card $=$

Likelihood of outcome: \qquad
11. Probability of a dog, cat, rabbit, or bird card $=$
 Likelihood of outcome: \qquad
12. Probability of a mouse card $=\square=\square$ Likelihood of outcome: \qquad
\qquad
\qquad

Worksheet 6 Real-World Problems:
 Data and Probability

Solve each problem using the mean. Show your work.

Example

The mean weight of 3 sisters is 92 pounds.
The total weight of 2 of the sisters is 178 pounds.
Find the weight of the third sister.

$$
3 \times 92 \mathrm{lb}=276 \mathrm{lb}
$$

Total weight $=3 \times$ mean weight $=3 \times 92 \mathrm{lb}=276 \mathrm{lb}$
Weight of the third sister $=$ Total weight -178 lb

$$
\begin{aligned}
& =276 \mathrm{lb}-178 \mathrm{lb} \\
& =98 \mathrm{lb}
\end{aligned}
$$

The weight of the third sister is 98 pounds.

1. The mean income of 4 workers is $\$ 1,250$.

The total income of 3 of the workers is $\$ 3,420$.
Find the income of the fourth worker.

Total income of 4 workers $=4 \times$ mean income

$$
=4 \times
$$

\qquad
\qquad
Income of 3 workers $=\$ 3,420$
Income of the $4^{\text {th }}$ worker $=$ \qquad - \qquad
\qquad
The income of the $4^{\text {th }}$ worker is $\$$ \qquad
2. The total cost of 10 toys is $\$ 780$.

The mean cost of 3 of the toys is $\$ 40$.
The mean cost of 5 of the other toys is $\$ 50$.
Find the mean cost of the remaining 2 toys.

Cost of 3 toys $=3 \times$ \qquad $=$ \qquad
Cost of 5 toys $=5 \times$ \qquad $=$ \qquad
Cost of 8 toys $=$ \qquad $+$ \qquad $=$ \qquad
Cost of the remaining 2 toys $=$ \qquad - \qquad $=$ \qquad
Mean cost of the 2 toys $=\frac{\square}{2}=$ \qquad

The mean cost of the remaining 2 toys is $\$$
3. The mean mass of a goat and a sheep is 78 kilograms.

The sheep is 6 kilograms heavier than the goat.
Find the mass of each animal.

Total mass of the goat and sheep
$=2 \times$ \qquad
$=$ \qquad
2 units \rightarrow Total mass - \qquad
$=$ \qquad - \qquad
$=$ \qquad
1 unit $\rightarrow \frac{\square}{2}=$ \qquad

The mass of the goat is \qquad kilograms.
$\ldots+6 \mathrm{~kg}=$ \qquad
The mass of the sheep is \qquad kilograms.
\qquad

Solve each problem to find the mean, median, mode, and range. Show your work.

4. A gardener delivered roses to 6 florists. He delivered 684 roses altogether.
He recorded the data in a table, but the last row of data could not be read because the ink was smudged.

Florist	Number of Roses
A	108
B	156
C	96
D	120
E	84
F	$?$

Example

Find the mean number of roses he delivered.
Mean $=\frac{684}{6}=114$
The mean number of roses he delivered is \qquad 114.
a. How many roses did he deliver to Florist F?

Number of roses delivered to 5 florists

$$
\begin{aligned}
& =\square \square^{+}+\ldots+\square \\
& =\square
\end{aligned}
$$

Number of roses delivered to Florist F
$=$ Total number of roses - \qquad
\qquad
\qquad
$=$ \qquad
The number of roses he delivered to Florist F is \qquad _.
b. Find the range of the number of roses he delivered.

Range $=$ Greatest number - Least number

$$
\begin{aligned}
& =\square \\
& =
\end{aligned}
$$

The range of the number of roses delivered is \qquad
c. Find the mode of the set of data.

The mode of the set of data is \qquad
d. Find the median of the set of data.

Order the numbers from least to greatest.

The middle numbers are \qquad and \qquad
Mean $=\frac{\square+\square}{2}=\square$

The median of the set of data is \qquad
5. In a javelin competition, Sam threw the javelin 5 times. The table shows the distance the javelin traveled on each throw. The recorder misplaced 2 of the 5 readings.

Throw	1	2	3	4	5
Distance	68 m	72 m	66 m	$?$	$?$

Help the recorder to find the two missing readings using this information.
The range of the data is 8 meters.
The shortest distance thrown is 66 meters.
The mean distance thrown is 70 meters.
a. Find the longest distance the javelin was thrown.

Range $=$ Longest distance - Shortest distance
Longest distance $=$ \qquad $+$ \qquad $=$ \qquad
The longest distance the javelin was thrown is \qquad meters.
b. Find the missing data.

Total distance
$=$ mean distance \times number of throws

Use average or mean to find the total.
$=$ \qquad $\times 5=$ \qquad
The missing data
$=$ total distance - distance of the 4 throws

$$
\begin{aligned}
& =\square-68 m-72 m-66 m- \\
& =
\end{aligned}
$$

The missing data is \qquad meters.
c. Find the median distance of the 5 throws.

The median distance is \qquad meters.
\qquad
\qquad

Solve each problem using a stem-and-leaf plot.

6. Mr. Williams deposits money in his bank account once a month for 12 months.

Amount of Money	
Stem	Leaves
6	368
7	$2 ?$
8	0449
9	127

6|3 stands for \qquad

Example

The mean amount of money he deposits each month is $\$ 80$.
Find the total amount of money he deposits in 12 months.
Total amount of money $=$ Mean \times Number of months

$$
\begin{aligned}
& =\$ 80 \times 12 \\
& =\$ 960
\end{aligned}
$$

He deposits \qquad in 12 months.
a. Find the missing data in stem 7 .

Total amount - Amount of money deposited in 11 months

$$
\begin{aligned}
=\square-\square-\square & -\square-\square \\
& \square-\square-\square
\end{aligned}
$$

The missing data in stem 7 is $\$$ \qquad .
b. The mode of the set of data is \qquad
c. The median of the set of data is \qquad .
d. The range of the set of data is \qquad _.

Solve. Show your work.

7. The line plot shows the weight of watermelons (rounded to the nearest pound) sold at a supermarket. Each X represents 1 watermelon.

a. The mode of the set of data is \qquad pounds.
b. The median weight of the watermelons is \qquad pounds.
c. Each pound of watermelon costs $\$ 3$. What is the total cost of all the watermelons?

The total cost of all the watermelons is $\$$ \qquad
\qquad
\qquad

Solve each problem by finding the probability or by describing the outcome. Show your work.

8. A bag contains 16 marbles.

6 marbles are red, 5 are blue, 3 are green, and 2 are yellow.

Example

Sylvia draws 1 marble from the bag.
What is the probability that the marble is red?

Number of favorable outcomes $=6$
Number of possible outcomes $=16$
Probability of drawing a red marble $=\frac{6}{16}=\frac{3}{8}$
The probability that the marble is red is $\frac{3}{8}$.
a. Sylvia returns the red marble to the bag. Then she draws 2 marbles from the bag, one at a time. Describe the outcome as certain, impossible, more likely, less likely, or equally likely.
i. It is \qquad that the first marble is yellow.
ii. If the first marble is green, it is \qquad that the second marble is yellow or green.
iii. If the first marble is red, it is \qquad that the second marble is red, yellow, or green.
iv. If the first marble is blue, it is \qquad that the second marble is red, blue, green, or yellow.
b. Sylvia returns the 2 marbles to the bag, and Tyron adds 1 blue marble and 3 green marbles to the bag. He then draws 1 marble from the bag. Find the probability as a fraction in simplest form.
i. What is the probability that a red marble is drawn?

Number of favorable outcomes $=$ \qquad
Number of possible outcomes $=16+1+3=$ \qquad
Probability of drawing a red marble

The probability that a red marble is drawn is \qquad .
ii. What is the probability that Tyron draws a red, blue, or green marble?

Number of favorable outcomes $=$ \qquad
Number of possible outcomes $=$ \qquad
Probability of drawing a red, blue, or green marble

The probability that Tyron draws a red, blue, or green marble is \qquad

